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Abstract. A river network model with a variable exponent of drainage basin is drexnted. 
The river network model is an extended version of the Scheidegger river model to take 
into account a flow-dependent meandering. The scaling behaviour of river-size distribu- 
tion, the scaling of drainage basin and the mul t i f rad  structure of flow (channel 
discharge) distribution are investigated by computer simulation. It is shown that the 
exponent of drainage basin changes continuously from 1.5 (the value of the Scheidegger 
river) to 1 (the value of a linear river) with increasing exponent y of flowdependent 
meandering, and the exponent of cumulative river-size distribution changes from 0.33 to 
0.0. It is found that the partition function 

of flow distribution scales as Z(q) = Ln9’ where I. is the flow (channel discharge) of water 
passing over the site i within the river network and the summation ranges over all sites, 
The multiscaling exponent g(q) of flow distribution changes with the exponent y of flow- 
dependent meandering. The dependence of f-a spectra on values of y are discussed. 

1. Introduction 

Recently, there has been increasing interest in fractal growth phenomena such as 
diffusion-limited aggregation (DLA), cluster-cluster aggregation, rough surfaces and 
river networks [l-91. Branched river networks are among nature’s most cominon 
patterns, spontaneously producing fractal structure [Z, 91. Rivers have been studied 
extensively by a wide variety of researchers with a variety of techniques and goals. 
Some models have been constructed for the evolution of an entire drainage network 
[lO-lZ]. Scheidegger’s river model is the simplest model which reveals the essential 
features of river formation. The cumulative size distribution of rivers in Scheidegger’s 
model satisfies the power law 

P( 3s) = s-1’3 

and the area A of the drainage basin scales as 

A ~ 1 . 5  

where L is the length of the mainstream in the downstream direction 1131. 

0305.4470/93/174273+07 $07.50 0 1993 IOP Publishing Ltd 4273 



4214 T Nagatani 

Very recently, in Scheidegger’s river model, it was found that the flow distribution 
shows a typical multifractal structure 1141. It was shown that the partition function 

of flow distribution scales as Z(q) = Lnq) where I, is the flow (channel discharge) of 
water passing over the bond i within the river network. It was also found that the 
river-width distribution shows multifractality if the width w of a river scales as w=Ip. 

In the field of potamology the best-known empirical law is that known as Hack’s 
law. This asserts that the area A of the drainage basin scales as A’” = L”’” and hence 
the fractal dimension of the mainstream can be seen to be 1.2. For all rivers, the 
fractal dimension of the mainstream calculated individually by the coarse-graining 
method falls in the range 1.1 to 1.3, with a mean value of 1.2 191. However, a river 
network model with a variable fractal dimension (or exponent of the drainage basin) 
has not been proposed until now. 

A river network model with a variable exponent of the drainage basin is presented. 
The river network model is an extended version of Scheidegger’s river model to take 
into account flowdependent meandering. The size distribution of rivers, the scaling of 
the drainage basin and the multifractal property of the flow distribution are investi- 
gated by use of Mode Carlo simulation. The exponent 5-  1 of cumulative river-size 
distribution is found to change continuously from 113 to 0 with increasing exponent y 
of flowdependent meandering, the exponent da of the drainage basin changes 
simultaneously from 1.5 to 1. The effect of flow-dependent meandering on the 
multifractality of the flow distribution is shown. 

2. The new model 

First the river network model with flow-dependent meandering is introduced. 
Scheidegger’s river model is extended to take into account flow-dependent meander- 
ing. In Scheidegger’s river model, a river meanders right or left at each site with 
probability 1. In our model, a river meanders right or left with probabilityp less than 1 
and goes straight on with probability 1 - p .  The meandering of a river is assumed to 
depend on the flow (channel discharge) of the river. The river tends to go straight with 
increasing flow. In order to take into account the straight flow of a river, we consider 
the extended river network model on a triangular lattice rather than the square lattice 
of Scheidegger’s river model. The flow of water on the triangular lattice goes not only 
right down or left down as Scheidegger’s model, but also straight down. Rains are 
assumed to fall steadily and uniformly on the sites of the oblique triangular lattice 
(figure 1).  One unit of water is injected into each site per unit time, then, the fallen 
raindrops ‘walk‘ down the slope. When two or three raindrops collide with each other, 
they join and make one larger drop, which runs down just as before the collision. The 
flow is not permitted to split. Flows are allowed to go straight down with flow- 
dependent probability l-p=l-l-y(ySO), and to go right down or left down with 
probability p .  As a result, rivers go down in a preferred direction (downstream) and 
do not contain any loops. AU branches are directed upstream. The flow (channel 
discharge) li at site i is defined as the amount of flowing water through site i per unit 
time. The flow at site i is proportional to the area of its drainage basin connecting 
upstream to site i. Each site of the river network can be characterized by the flow of 
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(4 ( 6 )  
Flgore 1. Typical river nelwork patterns generated by the river network model witb Row- 
dependent meandering. These runs were done on a 15x50 triangular lattice under a 
periodic lateral boundary condition for illustration. The river pattern obtained for (a) 
y=0.5;  (b) y =  1.0. 

water. If the site is labelled by the position (m, it), the flow (channel discharge) 
satisfies the equation 

I(m+ 1, n)= T(m- 1, n;Z(m-1, n))Z(m- 1, n) 

+[l-T(m,n-l;Z(m,n-l))]w(m,n-l)Z(m,n-1) 
+ 11- T(m, n+ 1; I(m, n + 1))][1- w(m, n+ l)]Z(m, n+ 1) + 1 (3) 

where m indicates the downstream direction, T(m, n) denotes the realization of the 
flow direction at site (m, n),  which is equal to 1 when the flow at site (m, n) goes 
straight down and 0 when the Row goes right down or left down, T(m, n; Z(m, n))  is 
given by 

1 probability 1 - Z(m, n)-Y { 0 probabilityI(m, n ) - y  
T(m, n; Z(m, n)) = (4) 

w(m, n) denotes the realization of the flow direction at site (m, n), which is equal to 1 
when the flow at the site (m, n) goes right down and 0 when the Row goes left down, 
and w(m, n) is given by 

probability 1/2 { probability 1/2. w(m, n )  = (5) 

In the limit y = 0, the river network model of equation (3) reproduces Scheidegger’s 
river model [13]. 

We perform computer simulations of equation (3) for the triangular lattice 
loo0 x IOOO. The flow Z(m, n) on each site is calculated under a periodic lateral 
boundary condition. The river at site (m,n) goes straight down with probability 
1 -Z(m, n)-y and goes right or left down with probability I(m, n)-’. For illustration, 
figure 1 shows typical patterns obtained by a small-size simulation. The patterns (a) 



4276 T Nagatani 

and (b) are obtained, respectively, at y=O.5 and y=  1.0 for size 15 X 50. Rivers tend 
to go straight down with increasing exponent y. 

To calculate the size distribution of rivers (or channel discharge) we define the 
cumulative river-size distribution P( 3 S) as 

wherep(S) indicates the distribution with size Sand S is the are of the drainage basin. 
The area S of the drainage basin equals the channel discharge. Figure 2 shows the log- 
log plot of cumulative river-size distributions for y=O.O, 0.3, 0.5 and 1.0. The 
cumulative size distribution scales as 

p( 3S) =,y-"-" (6)  
The values of the exponent (r- 1) are given, respectively, by (z- 1)=0.33,0.26,0.18 
and 0.04 kO.02 for y=O.O, 0.3,O.S and 1.0. The value of y=O.O agrees with that of 
Scheidegger's river model. The exponent (r- 1) approaches zero for y larger than 1.0. 
The exponent (z- 1) of the cumulative river-size distribution changes continuously 
from 0.33 (the value in Scheidegger's model) to 0.0 (the value for a linear river) with 
incresaing y. Table 1 shows the values of the exponents (z- 1) of the cumulative 
river-size distribution with the exponents of the drainage basin. Flow-dependent 
meandering has an important effect on cumulative river-size distribution. 

In order to further characterize the river network, it is necessary to derive the 
multifractal structure of flow distribution. We study the scaling behaviour of the 
partition function 

of the moments of flow. Figure 3 shows the log-log plot of the moments Z(q) against 

IO* I I I 1 
10 102 103 104 S 

FigweZ. Log-log plots of cumulative river-size distribution P(aS) against size S (the 
area of the drainage basin) for y=O.O, 0.3, 0.5 and 1.0. 
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Table 1. The exponent ( I  - 1) of the cumulative river-size distribution, the exponent db of 
the drainage basin and the minimum value a( m )  of f-a spectrum for the exponent y of 
Bow-dependent meandering. The errors in the exponents ( r -  1) and db are about C0.02. 
The errors in a ( m )  are about C0.03. 

Y 0.0 0.3 0.5 1.0 

(r-1) 0.33 0.26 0.18 0.04 
db 1.50 1.27 1.17 0.99 
a(-) 0.51 0.68 0.79 0.93 

the length L of the system in the downstream direction for y=  0.3. It is confirmed that 
the partition function scales for large L as 

Z(q) = La’) (7) 
Figure 4 indicates the log-log plot of the third moment Z(3) against L for various 
values of y. Figure 5 shows the multiscaling exponents c(q) against q for y=O.O, 0.3, 
0.5 and 1.0. The curve of y=O.O corresponds to that of the original Scheidegger river 
model. The flow distribution shows a typical multiscaling character. For different 
values of y, the multiscaling exponent ((4) changes to dehitely different structures. 
The multiscaling exponent c(q) depends strongly on the value of y or flow-dependent 
meandering. 

The exponent c(0) gives the scaling exponent of the number of total bonds 
covering the river network. c(0) equals 1 for any y. We note that the exponent c(0) is 
not 2 but 1 since the partition function Z(q) is d e h e d  for a constant value (1ooO) of 
system size. The exponent c(1) gives the scaling exponent of the cumulative number 
of bonds covering the river network. c(1) equals 2 for any y. 

The partition function Z(1) equals the integrated value of rainfall throughout the 
area since the amount of the channel discharge at a tixed position L is proportional to 
the amount of rainfall throughout the upstream area. Therefore Z(1)-L2 and 
c(1)=2. For a sufficiently large q, c(q)/q gives the scaling exponent of largest tlow. 
The exponent c(q)/q(q-”) is also consistent with the exponent of the drainage 
basin. In table 1, the exponent db of the drainage basin obtained from db= 

1 10 102 103 
L 

Flgure3. Log-log plot of the moments Z(q) against the system size L for y=O.3. 
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c(q)/q(q+-) is shown for various values of y. For y=O.O, c(q)/q(q+-) gives the 
value db = 1.50 k 0.02 of Scheidegger’s river model. In the l i t  y+ a, the exponent 
db equals 1 since the river becomes linear. The exponent db is larger than 1. In table 1, 
the value db = 0.99 f 0.03 for y= 1.0 is consistent with db= 1 within the numerical 
accuracy. 

The multifractal spectrum seems to behave very differently for q SO from that for 
larger qs. However, there seems to be no phase transition in the multifractal spectrum 
at q = O  since the minimum value of the channel discharge is 1 and the minimum 
normalized flow does not decrease faster than the power law. In order to characterize 
the multifractality of the flow distribution, it is convenient to normalize the flow. The 
normalized flow Ilat the site i is defined as I,!= IJZ(1).  The partition function Z’(q) of 
the normalized flow is given by Z’(q)=Z(q)/{Z(I)}q.  For a sufficiently large L ,  the 
partition function scales as Z’(q);-L-aq). With the Legendre transformation of r(q), 
we obtain the f- a spectrumf(q) = qa(q) - r(q) where a(q) = &(q)/aq is the variable 
conjugate to q. The f - a  spectrum of y=O.O corresponds to that of Scheidegger’s 
river model. The maximum value f (0)  of f(a) gives the scaling exponent c(0) = 1 for 

1 0  

8 

* 2 . * o / *  
. a *  . - 0 .  

6 
e o  . as) LA 

4 

2 

0 
-4 -2 0 2 4 

q 
FigureS. Behaviour of the multiscaling elrponent 5(q) for y=O.O, 0.3, 0.5 and 1.0. The 
case y= 0.0 corresponds to that of Scheidegger’s river model. 
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any y. The minimum value of a gives the maximum fraction of flow. The minimum 
value a( m) is exactly related to the exponent db of the drainage basin: 

where In Z(l)/ln L = 2. The minimum values a( m )  obtained from the simulation are 
respectively, given by 0.51, 0.68, 0.79 and 0.93k0.03 for y=O.O, 0.3, 0.5 and 1.0. 
Table 1 shows the values a ( m )  with db. The relationship (8)  is satisfied within the 
accuracy of the simulation. 

3. Summary 

A river network model with flow-dependent meandering has been presented. The 
scaling behaviour of river-size distribution and the multifractal property of flow 
distribution has been investigated using computer simulation. It was found that the 
exponent db of the drainage basin changes continuously from 1.5 (the value of 
Scheidegger's river) to 1 (the value of a h e a r  river) with increasing exponent y of 
flow-dependent meandering, and the exponent of cumulative river-size distribution 

, changes from 0.33 to 0.0. The multifractality of flow distribution was derived, and the 
dependence of the f- a spectrum on Row-dependent meandering was demonstrated. 
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